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Different formulations of free-surface inviscid flows lead to Fredholm 
integral equations of the first or second kind. In the present study, these 
formulations are compared in terms of efficiency and accuracy when 
different time and space discretization schemes are employed in 
studying inviscid oscillations of a liquid drop. A hybrid scheme results 
from combining a boundary integral equation approach for the 
Laplacian with a Galerkin/finite-element technique for the kinematic 
and dynamic boundary conditions. It is found that the fourth-order 
Runge-Kutta method is the most efficient among various schemes 
tested for integration in time and that cubic splines should be preferred 
as basis functions over conventional Lagrangian basis functions. 
Furthermore, the formulation based on the integral equation of the 
second kind is found to be more prone to short-wave instabilities. 
However, if numerical filtering is applied in conjunction with it, then 
the time-step used can be twice as large as that required by the 
unfiltered integral equation of the first kind. Results compare well with 
analytic solutions in the form of asymptotic expansions. 0 1992 

Academwz Press, Inc. 

1. INTRODUCTION 

Quite often, potential flow problems are treated numeri- 
cally using integral equations. Existence of solutions to such 
equations was first proved by Fredholm [ 11. Fredholm 
integral equations of the first or second kind follow from the 
representation of harmonic functions by either single-layer 
or double-layer potentials, respectively. Kellogg [2], in his 
classical treatise on potential theory, used this integral for- 
mulation extensively. Another approach, which received no 
mention in Kellogg, is through Green’s third identity. It 
represents harmonic functions as the superposition of both 
single- and double-layer potentials. An extensive review of 
the theory and a numerical implementation of the latter 
approach can be found in Jaswon and Symm [3]. 

Potential flow problems involving free surface motion are 
also amenable to an integral formulation. The complexity of 
boundary conditions on the free surface, however, made any 
serious application impractical for a long time. The advent 
of computers of reasonable speed in the late 1960s allowed 

1 To whom correspondence should be addressed. 

for further exploitation of the integral equation approach in 
the area of fluid mechanics and especially for free surface 
flows. In integral formulations generally, the potential and 
all other quantities describing the flow in the bulk can be 
given in terms of their respective boundary values. Thus, 
discretization of the entire domain is avoided and the 
dimensionality of the problem is reduced by one. This 
important property along with the ability of integral for- 
mulations to satisfy certain boundary conditions, through 
use of appropriate single- and double-layer potentials, 
constitute a great advantage over conventional numerical 
techniques such as finite differences and finite elements. 

There are various ways of implementing an integral 
equation formulation. For instance, Longuet-Higgins and 
Cokelet [4], in their study of steady and breaking surface 
waves, used a Lagrangian representation of the surface and 
a fourth-order explicit Adams-Bashforth scheme in order to 
advance the location of the free boundary. The normal 
velocity of the surface was given as the solution to an 
integral equation of the first kind. This method, however, 
produced a short-wave instability. Smoothing by introduc- 
tion of artificial viscosity permitted integration in time. 
Grilli et al. [S] extended the method developed by Dold 
and Peregrine [6] to account for three-dimensional non- 
periodic water waves. In particular, they used Green’s for- 
mula as opposed to Cauchy’s theorem which is limited to 
two-dimensional waves. 

As far as time integrations were concerned, they 
proceeded like Dold and Peregrine in the following way: 
First, the boundary integral equation was used to calculate 
the Eulerian time-derivatives up to a certain order. Next, 
the Lagrangian time-derivatives were calculated using 
boundary conditions and the potential and boundary loca- 
tion were updated. Finally, an integral equation of the first 
kind was solved for the normal velocity. Smoothing was not 
required for integrating up to the reported time. In their 
study of forced oscillations of solid bodies on water surfaces, 
Dommermuth and Yue [7] employed Green’s theorem to 
solve for the normal velocity in conjunction with the fourth- 
order Runge-Kutta method. In order to avoid concentra- 
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tion of Lagrangian markers in regions of high curvature 
which accelerates growth of instabilities, remeshing was 
performed after every time-step. This is a form of smoothing 
and a rather expensive operation. Blake et al. [S. 91 did 
not have to resort to any form of smoothing, however, in 
their study on the motion of transient cavities near rigid 
boundaries and free surfaces. They also used Green’s 
theorem along with linear Lagrangian basis functions and 
the explicit Euler time integration scheme. 

For two-dimensional flows, differentiation of the integral 
equation for the complex potential results in an integral 
representation for the complex velocity in terms of a vortex- 
sheet. This leads to an integral equation of the second kind 
for the vortex-sheet strength as well as the boundary 
location and the potential distribution. The point vortex 
method has been widely used, since Rosenhead’s [lo] and 
Birkhoff’s [ 111 studies of the motion of a vortex-sheet in a 
constant density fluid in the context of numerical simula- 
tions of layered flows. Such flows are known to be subject 
to Kelvin-Helmholtz (K-H) or Rayleigh-Taylor (R-T) 
instabilities. In numerical studies of R-T instabilities, 
Pullin [ 123 and others have found chaotic vortex behavior 
in regions where smooth rolling of the vortex-sheet should 
have been expected. Chaotic behavior has also been 
observed in conjunction with K-H instability by Pullin 
[ 123 and Krasny [ 131. In all these studies, chaotic motion 
was associated with the growth of short waves and 
smoothing had to be applied. Moore [ 141 argued that the 
above observations are due to R-T and K-H instabilities in 
the discrete forms of the equations, thus supporting an 
earlier conjecture by Birkhoff [ 111. 

Baker et al. [ 15, 161 used a generalized point vortex 
method for studying either R-T instabilities or plunging 
breaker waves. They also observed short-wave growth, but 
suppressed it by decreasing the time-step and limiting the 
length of integration in time. Using a similar method, 
Moore [ 173 observed a rapid growth of high modes, even 
though for the flow examined no unstable eigenvalues 
existed in the linear limit. He attributed it to a resonant 
interaction between the higher and lower modes due to 
numerical inaccuracy in the dispersion relation. Later Baker 
et al. [IS] extended their method to account for axisym- 
metric and three-dimensional flows. They observed that a 
representation of the free surface by a distribution of dipoles 
is better for short-wave instabilities as opposed to a dis- 
tribution of point vortices. They also argued that their 
method should be preferred because it leads to an integral 
equation of the second kind which can be solved iteratively 
with increased savings in computer-time. This is possible 
because the system matrix resulting from discretization of 
an integral equation of the second kind is diagonally domi- 
nant. The same argument was put forth by Karrila and 
Kim [ 193 for problems in creeping flow. 

In studying free-surface flows it is often most important to 

integrate for very long time in order to capture the non- 
linear effects as accurately as possible. It has been found that 
particularly demanding test-problems are those associated 
with theoretical predictions of phenomena observed in 
oscillating simple and compound drops [20, 2 11. Experi- 
mental results have been obtained by several investigators. 
e.g., [22225], who suspended liquid drops in a neutrally 
buoyant liquid or in the reduced gravity environment in 
space. Thus, the linear oscillation frequencies predicted by 
[26,27] have been confirmed and they have been observed 
to decrease with the square of the amplitude of the motion. 
This last effect was explained by Tsamopoulos and Brown 
[27, 281 in their asymptotic analysis that is valid for weakly 
nonlinear oscillations. For the same problems, numerical 
simulations have been conducted [29, 301 using the marker 
and cell finite-difference technique, which is very tedious 
and expensive. In addition, Benner [3 1 ] used finite 
elements for large-amplitude drop oscillations. Finally, 
Lundgren and Mansour [32] used the approach suggested 
by Baker et al. [16, 181 that has all the advantages of a 
boundary integral formulation, but still requires filtering to 
suppress the rapid growth of high modes. 

In view of the variety of integral representations, the 
space and time discretization schemes available and the 
numerical difficulties mentioned above, choosing the best 
combination for a given problem becomes a difficult task. 
For this reason we focus on comparisons, in terms of 
accuracy and efficiency between integral equation formula- 
tions of the first and second kind as well as of various 
explicit and implicit time integrators. For spatial discretiza- 
tion, boundary elements (BE) are used for the integral 
equation in conjunction with finite elements (FE) for the 
boundary conditions. This results in a hybrid method that 
combines the best features of both FE and BE. Further- 
more, in an effort to obtain a good representation of the 
dependent variables so as to suppress possible numerical 
instabilities, the cubic B-splines are compared with 
quadratic Lagrangian basis functions. 

In Section 2, the Eulerian formulation in terms of canoni- 
cal variables is given. Assuming that the drop surface does 
not fold over itself, the Eulerian representation is advan- 
tageous since it prevents uneven distribution of mesh points, 
which is known to cause growth of short-wave instabilities 
[7, 14, 321. The Laplacian is recast as an integral equation 
of the first or second kind in Section 3. Different numerical 
methodologies are discussed in Section 4, while numerical 
results are presented and discussed in Section 5. Conclu- 
sions are drawn in Section 6. 

2. EULERIAN FORMULATION IN TERMS 
OF CANONICAL VARIABLES 

The irrotational and incompressible motion of an inviscid 
liquid drop in a zero-gravity environment is considered. The 
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drop is surrounded by a tenuous gas. Thus, its dynamics 
are decoupled from those of the surrounding medium and 
the inviscid assumption is physically and mathematically 
justifiable as long as the Reynolds number is large [28]. The 
drop density is p and the interfacial tension is C. The surface 
of the drop during motion is described by RF( 8, t), where R 
is the dimensional radius of a sphere with the same volume 
as the drop, F(%, t) is the dimensionless shape-function of 
the drop, and 8 is the meridianal angle in spherical coor- 
dinates. Velocity potential, pressure, and time are rendered 
dimensionless with scales based on the results of linear 
analysis; @(r, 8, t) = $/(0&p)“*, P(r, 8, t) = P/(2o/R), t = 
f/( pR3/a) . ‘I* The dimensionless radial coordinate is scaled 
with the equilibrium radius of the drop. Since only axisym- 
metric disturbances are considered, the boundary reduces to 
a curve, namely, the generating curve of the drop surface. 
The outward pointing normal vector n is given with respect 
to unit vectors in spherical coordinates, e,, e,, by 

n= (Fer - ~~edl~* = n,e, + neee 
F*+F; 

3 

where F. = aF/a%. 
The governing equations in differential form are given 

elsewhere [21,28]. The goal of the present approach, 
however, is to reformulate the problem in terms of quan- 
tities defined on the boundary only. To this end, the value 
of the potential on the free surface is introduced as a new 
dependent variable, i.e., 

$(%, t) = @(r= F(%, t), 8, r). (2) 

The potential, I,+(%, t), the drop shape function, F(%, t), and 
the velocity normal to the interface, &B/an, constitute the 
only dependent variables of the problem. Zakharov [33] 
and Miles [34], independently, showed that the potential 
of the free surface and the free-surface location are the 
canonical variables of the Hamiltonian formulation for 
gravity water waves in two dimensions. They also showed 
that these two quantities are the most appropriate for 
description of the motion and used their spectral representa- 
tion in order to study the stability of periodic waves. 

The chain rule for differentiation is used in order to 
evaluate derivatives of $(%, t) with respect to t or 8. For 
example, 

a* a@ 

I I 

a@ aF 
as, =ae (3) 

f,r,r= F(B,r) 

a@/ari@,,r=F(o,t) can be expressed in terms of the normal 
and meridianal derivatives of the potential, 

Od%<71. (4) 

Substitution of Eqs. (3) and (4) in the usual kinematic 
condition [ 211 yields 

(5) 

There are other ways to arrive at the above equation; for 
example, one can combine the kinematic condition with 
the definition for the free surface and the normal velocity. 
However, the derivation given here is identical to that 
needed for the dynamic boundary condition as well. 

Next, Bernoulli’s equation is evaluated at the free surface 
and the pressure in the liquid is eliminated after introduc- 
tion of the normal force balance, 

2+2x+g+; Iv@I*=o, 
(6) 

Y = F(%, t), 06%<71, 

where P, is the constant gaseous pressure and X is the 
mean curvature of the surface given by 

Using Eqs. (3) and (4) in Eq. (6) a new form of the 
dynamic boundary condition is obtained that is entirely 
dependent on surface quantities, 

aQa* F@ --- 
an a0 F(F* + F;)l’*’ 

and similarly for a$/& IO. By combining Eqs. (1) and (3) The normal derivative of the potential is yet to be related to 
with the gradient operator in spherical coordinates, the potential at the free surface. This is done by using 
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Laplace’s equation and is discussed in the next section. 
Schematically one can write this relationship as 

L ‘*. g =O, 
! > 

It should be noted that there is an important advantage in 
the formulation presented above. Since the radial coor- 
dinate has dropped out of the equations, partial derivatives 
with respect to t or 8 are now taken with constant 8 or t, 
respectively. In the original differential formulation, r had to 
be held constant as well, which resulted in some ambiguity, 
when it came to numerical differentiation with respect to 8 
or t. Furthermore, the current formulation makes apparent 
the one-dimensional character of the problem and the 
numerical implementation is simplified. In summary, the 
three dependent variables, (I/, F, and B@/dn, are calculated 
by Eqs. (8), (5) and (9), respectively. 

When the drop is perturbed from a spherical configura- 
tion no initial velocity is imparted to it, 

g(e, t=O)=O, (10) 

so that the motion is initially irrotational and remains so in 
the absence of viscosity. The initial perturbation consists of 
a deformation of the interface that preserves the volume of 
the drop. In order to compare with results of asymptotic 
analysis [28], the initial deformation 

F(O, t = 0) = 1 +&P,(0) + o(r*) (11) 

may be assumed, where P,(S) are Legendre Polynomials of 
order n and E is a measure of the disturbance. 

Irrespective of the initial disturbance certain quantities 
remain invariant during motion. They are: 

(a) The volume of the incompressible drop, 

In view of the truncated expansion series used for the initial 
location of the boundary, the volume of the drop is slightly 
different from 471/3 initially and it will remain so forever, 
owing to the incompressibility of the liquid. 

(b) The total mass outflux across the free surface, which 
must remain zero due to mass conservation, 

I=~S~dA=2n~~~F(F2+F~)1~2sinBdB=0. (13) 

This can be shown analytically by using Gauss’ theorem on 
the Laplacian, and 

(c) The total energy which is composed of the kinetic.. 
E, and surface. E,v. energies 

E=Ek+Es=;j 
I 

IV@\*&‘+ j_ d.4 
- 4 

^ 

i‘ 
K =7-t 
0 

@ g F(F* + Fi)“‘sin 0 d0 

I 
A 

+ 271 F(F’ + Ft)‘,’ sin 8 d0 = 471. (14) 
0 

The total energy must remain equal to the surface energy 
of an undisturbed spherical drop. These invariants offer 
excellent checks for the global accuracy of any numerical 
scheme. 

3. INTEGRAL FORMULATIONS 

In order to relate the velocity potential on the drop sur- 
face with the normal velocity to it, the Laplacian is replaced 
by an equivalent integral equation. There are two ways of 
doing this. 

3.1. Direct Application of Green’s Theorem 

The three-dimensional singular solution of the Laplacian 
at the field point x’(r’, 8’, I’) subject to a point force at the 
source point x(r, 6, 4) is given by 

G(x, x’) = - l&+=& [( r sin 19 cos 4 - r’ sin 0’ cos 4’)’ 

+ (r sin tI sin 4 - r’ sin 6’ sin 4’)’ 

+ (r cos 0 - r’ cos @)*I ’ ‘. 

Application of Green’s formula gives 

I 
cr@(x’, t) + f 

A 
@(x, t) g (x, x’) dA(x, t) 

Q a@ = _ A an (x, t) 6(x, x') dA(x, th 

(15) 

(16) 

where A is the surface enclosing the drop, and a(.?/& is the 
derivative of G with respect to the outward pointing normal. 
If the field point lies in the interior (exterior) of the drop, the 
coefficient of the jump term, LX, is equal to 1.0 (0.0). If it lies 
on the surface, then it is given by the solid angle (measured 
in multiples of 47~) under which the domain occupied by the 
fluid is seen from that point (e.g., 01= i for a smooth sur- 
face). In this case, the field point may coincide with one of 
the source points, thus rendering the integrals in Eq. (16) 
singular. As explained in the next section, the singularity in 
the 6 kernel is weak and hence integrable, whereas the one 
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in &/an is only integrable in the Cauchy principal value 
sense. 

In order to isolate the singularity in the integrand 
involving &/an, the value of the potential at the field point 
is added and subtracted in Eq. (16) resulting in 

i A g (x, t) G’( x, x’) dA(x, t) 

^ 
= a@(x’, t) + i, @( x’, t) g (X, x’) dA(x, t) 

+ 9; cwx, t) - @(x’, f)l 
A 

. 

x $ (x, x’) dA(x, t). 

Now the integrand in the second integral of the LHS of 
Eq. (17) is weakly singular, because when field and source 
points coincide, the difference between 0(x, t) and @(x’, t) 
goes to zero as Ix - x’j. Combining this fact with the 
0(1x- ~‘1~‘) singularity in &/an renders the afore- 
mentioned integrand integrable. Since @(x’, t) is a constant 
with respect to integration over all source points on the 
surface, the first integral in the RHS of Eq. (17) simplifies to 
a well known principal value integral [3], 

^ 
@(x’, t) c, g ( x, x’) dA(x, 2) = -; @(XI, t). (18) 

Thus, Eq. (17) becomes 

^ 

P A 
[@(x, t) - @(x’, t)] g (x, x’) dA(x, t) 

= iF A g (x, t) a x, x’) dA(x, t). (19) 

For axisymmetric problems the potential is independent of 
4, consequently 4’ can be set to zero for simplicity, and the 
integration of the kernels with respect to 4 can be carried 
out giving 

x $ (F, F’, e, ey F(F2 + F;)“* sin e de 

zz 

i 
on g (e, t) G(F, F’, e, ey 

x F(F* + F!j)‘12 sin 8 de, (20) 

where 

G = j-1’ 6 dd and 
dG *n aG 
dn= 5 - dd. 

0 C?n (21) 

These two kernels can be written in terms of elliptic integrals 
of the first and second kind as is shown in the next section. 
When Eq. (20) is used to calculate &B/an (Dirichlet’s 
problem), it constitutes a Fredholm integral equation of the 
first kind. This is a well posed problem [3]. However, as 
Baker and Shelley [35] point out, it must be solved by 
direct inversion since matrix splitting that would lead to an 
iterative scheme is not possible. Direct matrix inversion of 
fully populated matrices, such as those generated here, is 
widely performed by standardized routines. The cost for 
inversion, however, increases as n3, where n is the number of 
equations generated by discretization in space. In addition, 
a marked increase of the condition number of the system 
matrix has been observed which results in reduction of 
accuracy. Fortunately, the mesh size required for the 
present study remained small enough so that this effect did 
not dominate the solution procedure and results of high 
quality could still be obtained. It should also be noted that 
both $ and a@/& appear in Eq. (20) and, if it is solved 
simultaneously with Eqs. (5) and (8) for calculating q, F, 
and &P/an, it cannot be classified as a Fredholm equation of 
either the first or second kind. 

3.2. Indirect Formulation by Using a Dipole Distribution 

An alternative approach for solving the Dirichlet problem 
is to use an integral equation of the second kind. This was 
originally proposed by Baker et al. [ 181 and more recently 
employed by Lundgren and Mansour [32]. At first, the 
potential is given in terms of a distribution of double layer 
potentials, p, as follows: 

^ 
@(x’, t) = ccp(x’, t) + $A p(x, t) g (x, xl) dA(x, t). (22) 

Alternatively, when the flow is incompressible, the velocity 
can be derived from a vector potential, T: 

v=VxT. (23) 

Therefore, the velocity normal to the drop surface may be 
given either in terms of the scalar potentials Cp, or the vector 
potential, T: 

v.n=g=(nxV).T. (24) 

Even though the motion is irrotational inside the drop, 
there is a discontinuity in the velocity field generated by the 
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double layer potential as the interface is crossed. Conse- 
quently, the free surface can be viewed as a vortex sheet with 
circulation density y which according to [36] is given by 

T(x’, t) =$ y(x, t) &(x, x’) d~(x, t). (25) 
A 

Comparison of the expression for velocity in terms of the 
double-layer potential with the one resulting from the 
circulation and after some algebra yields a relationship 
between y and p: 

y= -nxV,p. (26) 

Substitution of Eq. (26) into Eq. (25) and application of 
Gauss’ theorem gives 

T(x’, t) =$ [n(x, 2) x V&x, x’)] p(x, t) dA(x, t). (27) 
A 

As a result of these manipulations, the indirect method 
proceeds by calculating the double-layer potential distribu- 
tion from the scalar potential using Eq. (22), the vector 
potential from the double-layer potential using Eq. (27), 
and finally the normal velocity at the surface from the vector 
potential using Eq. (24). 

Similarly to the direct method, when the field point is 
taken onto the smooth surface, the integrals in Eqs. (22) 
and (27) become 

@(x’, t) = -; p(xf, t) 

and 

T(x’, t)= / [p(x, t)-/1(x’. t,] 
‘4 

x [n(x, t) x Vd(x, x’)] &4(x, t). (31) 

The new integrands are weakly singular, since (p - p’) goes 
to zero as Ix -x’I, whereas the kernels above vary as 
Ix-X’I 2. 

For the case of axisymmetric flows, 4’ may again be set to 
zero and the integrations with respect to 4 are carried out 
yielding 

and 

x g (F, 8, F’, @) F(F2 + Fi)If2 sin 8 d0 (32) 

T(8’, t) = ed ST CP(& t) -A@; f)l 
0 

x t?(F, 0, F’, 0’) F(F’+ Fi)‘12 sin 8 de, 

where aG/dn is given by Eq. (21) and 

(33) 

1 
2n 

e,G= n x Vc dqk (34) 
0 

The specific expression for the kernel G is given in the next 
section. Having obtained the single nonzero component of 
T, (T#e,), the normal velocity is calculated by simplifying 
Eq. (24): 

1 
+ jA /4x, f) g (x, x’) Wx, t) (28) a@ -= aT, 

88+ 
T4(F cos 0 + F, sin 0) 

an Fsin 0 1 (F2+ F;)-“2. (35) 

and 

Vx’, f) = JA Ax, t)Cn(x, f) x V&, x’)l d&x, t), (29) 

respectively, where - i and 0 are the jump term coefficients 
corresponding to the singular kernels &fart and n x V6. 
The remaining integrals in Eqs. (28) and (29) are now 
understood in the Cauchy principal value sense. In order to 
extract the singular part of the kernels and render these 
integrands integrable, a procedure similar to that for the 
direct method is followed. Thus, 

@(x’, t) = -Ax’, t) + p [Ax, t) - ,4x’, t)l 
A 

I  

x z (x, x’) dA(x, t) (30) 

Given the potential on the free surface, Eq. (32) is a 
Fredholm integral equation of the second kind for the 
dipole distribution ,LL. Its homogeneous part has no non- 
trivial solutions [3] and it can be solved using an iterative’ 
process without further complications. This is preferable 
over a direct matrix inversion for large problems. Compared 
to Green’s method, this advantage is attenuated by the extra 
time required for construction of twice as many system 
matrices. 

4. NUMERICAL SOLUTION 

Due to the integral formulation and the introduction of 
canonical variables, discretization in only one space dimen- 
sion is required. The absence of any region on the free 
surface where abrupt changes occur permits the use of an 
equidistant mesh in 19 and constant time steps. 
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4.1. Finite-Element Implementation 

The Galerkin/finite-element method is used for trans- 
forming the kinematic and dynamic boundary conditions 
from partial differential equations to initial value equations. 
To this end, the corresponding unknown variables (F, II/) 
are represented as a finite sum of unknown coefficients 
multiplied by a set of prespecified basis functions that are 
nonzero only over a few elements of the domain. The weak 
formulation results upon multiplication of Eqs. (5) and (8) 
by each basis function in turn and integration over the 
domain. Integration by parts is also carried out in order to 
eliminate the second derivative, appearing in the surface 
curvature term. Four Gauss integration points are used for 
the evaluation of integrals over each element. This ensures 
that any numerical error is controlled by the interpolation 
of unknown functions rather than by numerical integration 
c371. 

Two different basis functions are used, the quadratic 
Lagrangian polynomials and the cubic B-splines. The 
former functions are nonzero over two elements at most, 
and guarantee continuity of the dependent variable only 
[38]. As a result, they are constructed so that the value of 
the interpolated function at the nodes is equal to the values 
of the unknown coefficients in the finite element representa- 
tion. Schematically, 

F(e, t)= 5 ai Li(e), ll/(e, t)= i P;(t) L,(e), (36) 

with 

i= 1 i=l 

F(8 = ~9~) = cci, bw = ei) = P,, (37) 

where N is the number of nodes in the mesh, ai and /Ii are 
the unknown coefficients, and Li are the Lagrangian basis 
functions. This interpolation is O(h3) and 0(/z*) accurate 
when representing the function and its derivative, respec- 
tively, where h is the size of an element. Moreover, it gives 
rise to banded matrices with bandwidths of live. This last 
feature, however, is of little help, when the resulting matrix 
must be combined with the fully populated matrix obtained 
from the integral equation. 

The cubic B-splines are nonzero over four elements at 
most and guarantee continuity of the function along with its 
first and second derivatives [39]. Since Bi(e = ei) # 6, the 
coefficients, ai, hi, of the B-spline representation 

Nfl 

F(B, t) = C a,(t) Bite), 
i=O 

N+l (38) 

wt 1) = 1 bi(t) Bi(@, 

are different from the values of the unknown functions at the 
nodes. Consequently, this representation will require an 
additional matrix multiplication in order to obtain the 
nodal values of the functions. The coefficients corre- 
sponding to fictitious nodes outside the domain, namely, a,, 
aN+l, boy bN+,, are expressed in terms of coefficients in the 
interior nodes by using boundary conditions. Since 
B-splines extend over four elements, they give rise to a 
banded matrix with a bandwidth of seven and require more 
calculations for the construction of the system matrix. These 
small disadvantages are outweighed by the increased 
accuracy and smoothness of the solution. This is because 
B-splines are Q(h4) and O(h3) accurate in interpolating a 
smooth function and its first derivative, respectively. 

4.2. Boundary-Element Implementation 

In the direct formulation only one additional equation 
needs to be discretized, namely, Eq. (20). This is done in a 
fashion similar to that of the differential equations 
previously described, and the corresponding unknown is 
written as either 

g (e, t) = 5 hi(t) qe) 
i= 1 

or 

g (e, t) = Ni’ di(t) Bi(e). (39b) 
i=O 

By letting the field point approach each one of the nodal 
points N equations are obtained. The axisymmetric kernels 
G and aG/an are given in spherical coordinates as 

G= K(m) 
“Jz 

and 

ac aG aG 
G=nr7g+n0z 

= ~ E(m) K(m) 
rc 1 

(40) 

4 cos 0 sin 8’ dK 
X 

sin(0 + 0’) -- 
a+b dm a-b E(m) y (41) 1 
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where 

a = F2 f F” - 2FF’ cos 8 cos 8’ (42) 

b = 2FF’ sin 0 sin 8’ (43) 

26 m=- 
a+b’ (44) 

Also, K(m) and E(m) are the elliptic integrals of the first and 
second kind, respectively. These integrals are approximated 
with less than 2 x lo-* error by the expressions 

4 

K(m) = 1 Aim’, +In (45) 
,=O 

E(m)=l+ i (46) 
i= 1 

where m, = 1 -m, and Ai, C,, D,, and Ei are constants 
given in [40]. When the field point (F’, 0’) coincides 
with one of the source points (F, 0), the G kernel exhibits 
a logarithmic singularity of the form In l/(a- b) = 
In l/lx - x’12, while the aG/an kernel exhibits a stronger 
singularity of the form Jx - x’[ ~ ‘. The former term is 
integrated by resorting to a 12-point logarithmic qua- 
drature [37]. The latter term is rendered regular by the 
procedure described in the previous section. The remaining 
regular terms are integrated using the normal Gaussian 
quadrature with varying numbers of Gauss points as 
suggested in [41]. For further details, see Pelekasis et al. 
WI. 

Use of the indirect method, requires discretization of 
three equations, namely, Eqs. (32), (33), and (35). In par- 
ticular, Eq. (35) is a differential equation and can be solved 
using finite elements as described for the kinematic and 
dynamic boundary conditions. Equations (32) and (33), 
however, are integral equations and are discretized in a 
fashion similar to that discussed for the Green’s function 
formulation. The only new kernel is (? and is given by 

G(F, 8, F’, et)= -!!j+!$ot i3+!+n,g 
( > 

x (2 -If-m)]. (47) 
1 

When the field and source points coincide, G exhibits a 
strong singularity (Ix - x’[ -‘), when the integration is 
performed along a line, and the calculation proceeds as 
discussed for the aG/an kernel. 

Equation (32) is an integral equation of the second kind, 
when solved for the dipole distribution density. Thus, an 
iterative procedure can be used as a more efficient alter- 
native to the direct inversion. Usually, ten iterations were 

sufficient for convergence of the norm C,“-. , 1~: ’ ! ,li:‘ !.!“I 
between iteration k and /i + 1 to less than 10 ‘. A similar 
behavior was observed in [32]. However, the savings in 
CPU time over the direct inversion turn out to be minimal, 
since, for the discretization used here, almost 90% of the 
time is spent in constructing the system matrix and only 
10 % in inverting it. This is expected to change for problems 
of larger size. Subsequently, the vector potential T, is 
calculated using Eq. (33), which amounts to a matrix 
multiplication. 

If at most 101 nodes are used in the free surface, the direct 
approach is 30 % faster than the indirect one. The reason is 
again that most of the numerical effort is consumed in 
constructing the system matrices rather than inverting 
them and in the latter approach two matrices have to be 
constructed per time step. Table I gives the CPU time 
requirements with increasing number of elements for the 
two integral formulations. The approaches involving direct 
matrix inversion and iterations until convergence are also 
compared in terms of CPU time, when the integral formula- 
tion of the second kind is used. The numbers quoted 
correspond to CPU seconds per time step on the IBM 3090 
at CNSF. In all cases the computation time was found to be 
roughly tripled when the number of elements used was 
doubled. 

4.3. Integration in Time 

The kinematic and dynamic boundary conditions are 
used for advancing in time the location of the free surface 
and of the value of the surface potential, respectively. Using 
the Galerkin/finite-element method these equations may be 
written schematically 

(48) 

where M is the common mass matrix and F,, F, are the 
forcing vectors for the kinematic and dynamic equations, 
respectively. Upon inversion of the mass matrices, Eqs. (51) 

TABLE I 

CPU Time, in Seconds, Required per Time-Step on the 
IBM 3090 at CNSF for the Direct and Indirect Method, with 
Increasing Number of Nodal Points, N; B-Cubic Splines Are Used 
along with the Fourth-Order-Accurate R-K 

Indirect method 

N Direct method 

26 1.78 
51 4.75 

101 14.5 

Inversion Iterations 

2.3 2.34 
6.7 6.3 

21.75 19.95 
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are employed with either an explicit or an implicit time- 
integration scheme. The fourth-order Adams-Bashforth- 
Moulton (A-B-M) predictor-corrector method and the 
fourth-order Runge-Kutta (R-K) integrator are the explicit 
schemes considered. First, the free boundary and the 
velocity potential are advanced in time. Subsequently, either 
one of the integral formulations is used to calculate the 
normal velocity at the interface. This procedure needs to be 
repeated once more for the corrector step in the A-B-M 
method and three more times for the usual intermediate 
steps in the R-K method. Since both algorithms are equally 
accurate, 0(dt4), their stability characteristics will be the 
decisive factor in choosing one of the two. 

If the corrector step in the A-B-M method is repeated 
until two consecutive solution vectors agree to within a 
prescribed tolerance the scheme becomes implicit. This 
amounts to solving a set of nonlinear algebraic equations by 
successive substitutions, where the predictor provides an 
initial guess. The scheme converges when a Lipschitz condi- 
tion is satisfied. For a given spatial discretization this 
provides an upper limit to the time-step. The rate of 
convergence is linear. Each time the corrector step is 
repeated, the free surface and the potential are advanced 
and the normal velocity is found using the integral equation. 

As an alternative implicit scheme, the trapezoidal rule 
was used with Newton’s iterations to solve for all three 
unknown functions simultaneously. This requires inversion 
of a matrix that is three times the size of the matrix 
generated by the integral equation alone. However, the rate 
of convergence is now quadratic. Due to the additional 
number of equations involved in the indirect formulation, 
this method was used in conjunction with the direct 
formulation only. The set of the 3N nonlinear residual 
equations is written schematically as 

where, 

NY) = 0, (49) 

y = (a, > ~2, . . . . UN, b,, b,, . . . . b,v, d, > 4, . . . . d,v) (50) 

is the vector of all the unknowns. Newton’s method starts 
with an initial guess y” and produces successive improve- 
ments to the solution vector by 

Y k+ 1 = yk - J -‘R(yk), k = 0, 1, 1.1. (51) 

The Jacobian matrix J = aR/ay is analytically calculated 
and is fully populated. A standard IMSL routine 
(DLFTRG) is used for its factorization. Typically, three to 
four iterations are sufficient to reduce the error in the 
Euclidean norm to less than lo-‘. 

Since calculation of elements in the Jacobian matrix 
corresponding to the Laplacian involves differentiation of 

the already singular kernels G and aG/an, one might expect 
that even stronger singularities will arise. However, as 
explained in [20], this is not true, since at the singular point 
G and aG/an depend on the coefficient yi both through F 
and F’. As a result, the strongly singular terms cancel each 
other out and the Jacobian elements exhibit the same type 
of singular behavior as the residual equations. 

No unstable eigenmodes exist for the linear problem 
under examination [28]. However, free-surface inviscid 
flows are known to be subject to instabilities due to dis- 
cretization error in the dispersion relation that may cause 
resonance between modes [4, 14, 321. These instabilities are 
not associated only with explicit integration schemes in 
which case they would be removable by reducing the time- 
step (conditional stability). Instead, they are identified by 
the growth of the mode containing as many waves as 
allowed by the number of nodal points. For instance, when 
101 nodal points are used, the Legendre mode P,, is 
growing faster than any other mode. This is a nonlinear 
instability because it is accelerated when the initial distur- 
bance amplitude is increased. Finer discretization in space 
excites the new highest mode captured and along with tem- 
poral refinement simply postpones the instability without 
ever eradicating it [ 2 I]. 

The high-mode instability has been observed in the 
present study also and mainly in the indirect formulation. 
With that formulation, introduction of artificial viscosity 
(filtering) is necessary in order to damp out the higher 
modes while leaving the lower ones essentially unaffected. 
When Green’s theorem is used, filtering is ineffective 
because the highest modes do not grow as fast. The filtering 
scheme employed in [32] is also used here. In particular, 
after each time-step the surface potential is smoothed out by 

(52) 

Equation (52) is approximated by a second-order-accurate 
formula for the fourth derivative and an Euler time-step, 
giving 

$~=*j+Adt[ll/j+,- 
41//j+l+6~j-4411/j-l+~,/,,]. (53) 

Specific values for the time-step, number of elements, and 
the remaining parameters used in the calculation are given 
in the next section. In all cases, time-steps selected were so 
small that, considering the increased accuracy charac- 
teristics provided by the fourth-order-accurate R-K or 
A-B-M time integrators, numerical error was controlled by 
spatial discretization. Consequently, evaluation of spatial 
derivatives of the shape-function and surface potential were 
the error-controlling factors resulting in 0(/r’)- and O(h3)- 
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accurate numerical schemes for quadratic basis functions 
and cubic B-splines, respectively. This behavior persisted 
until the accuracy of the results was significantly reduced 
due to growth of high modes. At any rate, shapes were 
calculated accurately to at least two significant digits. 
Global accuracy was guaranteed by monitoring the 
invariants of the motion. 

Table II compares the performance of the direct method 
with increasing number of elements at three different loca- 
tions on the free surface at time t = 6.72, corresponding to 
approximately eight periods of Pd. The fourth Legendre 
mode was excited initially and the amplitude, E, was set to 
0.3. A time-step of 0.001 was used when 100 elements were 
taken on the free surface, whereas the time-step was set to 
0.002 with both 25 and 50 elements. The fourth-order- 
accurate R-K time integrator was employed along with 
B-cubic splines. As expected, accuracy is not as good at the 
pole, 6 = 0, where the solution is captured up to the second 
significant digit. Away from the pole, e.g., at the equator, 
6 = 7112, and at intermediate points, B = 0.754, solution is 
captured up to the third significant digit. Convergence of 
the method conforms well with the aforementioned 0(h3) 
behavior for the numerical error in the location of the 
boundary. Practically, this behavior implies that doubling 
of the number of elements improves the solution for the 
unknown function by one significant digit; see Table II. 
Note that the solution at the pole also behaves in this way, 
even though it is less accurate in general. 

The solution obtained with the indirect formulation 
converges at the same rate provided that short waves have 
not evolved yet. In the above table, values for the location 
of the free surface are given, obtained with the indirect 
formulation and calculated at the same time and meridianal 
position as the ones given for the direct formulation. The 
same space and time discretization schemes were used as 
with the direct formulation. The time step At was set to 
0.002, while 101 nodes were used on the free surface and the 
filtering parameter Jti dl= -0.004. Agreement with the 
direct formulation is obvious. As time increases however, 
short waves grow significantly and results obtained with the 
indirect formulation become inaccurate. 

TABLE II 

Convergence with Increasing Number of Nodal Points, N, of the 
Boundary Location at the Pole, 0 = 0, the Equator, 0 = n/2, and an 
Intermediate Point, tI = 0.754; E = 0.3, n = 4, t = 6.72 

Direct method Indirect method 

H N=26 N=51 N= 101 N= 101 

0.0 1.3869 1.3435 1.3541 1.3549 
0.754 0.88297 0.8962 0.8986 0.8976 
1.571 1.0602 1.06297 1.0668 1.0637 

5. RESULTS AND DISCUSSION 

5.1. Linear Oscillations 

Capillary oscillations of a liquid drop for infinitesimal 
disturbances were examined by Rayleigh [26], who cal- 
culated the dimensionless frequency for each linear mode, k, 

wk = Jk(k - 1 )(k + 2). (54) 

Numerical solution of the linear problem is very simple 
since the discretized equations are also linear and can be 
solved by a single matrix inversion, even when an implicit 
scheme is used [43]. Furthermore, with a constant time- 
step, the system matrix remains constant and needs to 
be inverted only once. The time-stepping algorithm is 
constructed by multiplying the inverted matrix with the 
updated right-hand-side vector. Thus, large savings are 
achieved in computer time which is not significantly 
increased when the time-steps are decreased. As a result, a 
simple implicit integration scheme, iike the trapezoidal rule 
(TR), is preferable because of its stability characteristics. 

Oscillations of a liquid drop induced by an initial excita- 
tion of the fourth Legendre mode were computed. First, the 
direct formulation was used with 50 quadratic Lagrangian 
elements and a time step At = T,/200, where T4 = 2nJw, = 
0.7405 is the period of the four-lobed mode as predicted by 
the linear theory. Integration in time was carried out for 
10 periods and required 181 CPU set on an IBM 3084 
machine. The results at the end of computations were 

- !  

-15 1 
0 5 10 

Time 
FIG. 1. Linear oscillation of kinetic (-), surface (- - -), and total 

energy (. . .) during several periods of the four-lobed mode. The surface 
energy has been translated so that it starts from zero. 
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FIG. 2. Variation of the Legendre coeflkients, cir of the velocity potential normalized with the linear amplitude of P4. Indirect method and B-splines 
werewed;~=0.3,N=101,dt=0.002,~=0. 
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TABLE III 

Performance of Indirect Formulation with Cubic B-Splines 
and Fourth-Order R-K 

Number 
of 

51 
51 

51 

51 

51 

51 

101 
101 

101 

101 

101 

Time step Filtering 
At /I A/ Variation of total energy 

0.008 None 
0.004 None 

0.002 None 

0.004 -0.004 

0.004 -0.002 

0.004 -0.001 

0.004 None 
0.002 None 

0.002 -0.005 

0.002 -0.004 

0.002 -0.002 

Immediate exponential increase 
Increases by 6 % after 

two periods of P, 
Increases by 0.1 % after 

two periods of P, 
Decreases by 0.09 % after 

two periods of P, and by 
0.27 % after five periods of P, 

Decreases by 0.05 % after 
two periods of P, 

Decreases by 0.03 % after 
two periods of P, 

Immediate exponential increase 
Increases by 0.0004 % after 

one period of P, 
Decreases by 0.0064 % after 

one period of P, 
Decreases by 0.002 % after 

eight periods of P,, 
but more so after nine periods 

Decreases by 0.018 % after 
four periods of P,, 
but increases after five periods 

accurate to three significant digits for the drop shape as well 
as for the potential and to two significant digits for the nor- 
mal velocity. The total energy and mass flux were conserved 
with an accuracy of live significant digits. There is a slight 
decrease in accuracy with time, probably due to interactions 
of the primary mode with higher ones that are introduced 
due to round-off error. The distance between consecutive 
maxima in the oscillations of the normalized fourth 
Legendre mode, provides the period of its oscillation, 
r, = 0.740, accurately to three significant digits. The period 

TABLE IV 

Performance of Direct Formulation with the Fourth-Order 
Explicit/Implicit A-B-M Method and the Fourth-Order Explicit 
R-K Method and Both Types of Basis Functions 

A-B-M R-K 

Number 
node 

Maximum time step 
for convergence 

of iterations/stability 
Number Maximum time step 
of nodes for stability 

21 0.0025 51 0.004 
41 0.001 101 0.001 
81 0.00025 

2.0 

bi 
L 

-0.5 ! 

0 1 :: 

Time 

FIG. 3. Variation of kinetic (-), surface (- - -), and total energy 
(...). Indirect method and B-splines were used; E= 0.3, N= 101, 
dc = 0.002, I, = 0. The surface energy has been translated so that it starts 
from zero. 

of oscillation of the kinetic and surface energy is measured 
from Fig. 1 and it is exactly one-half of T,, as expected 
[28]. In this and all subsequent plots showing variation of 
the energy of the system, it should be understood that the 
surface energy is normalized to zero. 

Subsequently, the indirect formulation was used and 
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Fig. 4. Profile of velocity potential obtained with the indirect method 
and 8-splines at t = 1.89; E = 0.3, At = 0.002,1= 0. 
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yielded similar results. Introduction of cubic B-splines 
significantly improved accuracy over the Lagrangian basis 
for both integral formulations. This is accompanied by a 
slight increase in the required CPU time, but it is more than 
compensated for by the higher accuracy and smoothness of 
the solution. 

5.2. Nonlinear Oscillations 

Important nonlinear effects in the present and similar 
problems in drop dynamics [21, 28, 32, 421 evolve very 
slowly in time, e.g., after several periods of the primary 
oscillation. Thus, the major goal of the present analysis is to 
provide a robust numerical scheme for accurate and efficient 

-1.0 I 
0 5 10 

Time 

1.0 

8 0.0 

-1.0 

integration for very long time intervals. Unless otherwise 
indicated, the mode that is initially excited is the four-lobed 
one. 

5.2.1. Indirect Formulation with Lagrangian Basis 
Functions. It is found that representing dependent vari- 
ables via Lagrangian quadratic basis functions is much less 
accurate than via cubic B-splines for the same numerical 
effort. This is generally true for both direct and indirect for- 
mulations. In particular, when the indirect formulation with 
Lagrangian basis functions is used the resulting scheme fails 
irrespective of the time integrator. Total energy increases 
and higher modes show abnormal increase in amplitude 
even before half a period of the primary oscillation is 

5 

Time 

I I -1.0 1 I 
0 5 10 0 5 10 

Time Time 

Fig. 5. Variation of the Legendre coefficients, cir of the velocity potential normalized with the linear amplitude of P,. Indirect method and B-splines 
were used; E = 0.3, N = 101, Ar = 0.002,1 At = -0.004. 
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reached. Reduction of the time-step size does not improve 
the situation. Mesh refinement only shifts the problem to 
higher modes. For example, use of 101 nodal points excites 
the modes closer to P,,. By increasing the disturbance 
amplitude these modes grow even faster. Use of filtering 
cannot remedy the situation due to the very high growth 
rates of the short waves. This instability is, most likely, due 
to inaccuracies in calculating derivatives of dependent 
variables using the Lagrangian basis functions. 

52.2. Indirect Formulation with Cubic B-Splines. In an 
effort to eliminate the aforementioned instability cubic 
B-splines are introduced. They are expected to enhance 
smoothness of the solution since they guarantee continuity 

1.5 

0.5 

i- 

-0.5 

-1.5 

I  

1.5 

0.5 

b 

-0.5 

-1.5 

TIME=5.88 

of the first and second derivatives of the dependent 
variables. The Runge-Kutta integrator is used. since it 
exhibited slower short-wave growth even with Lagrangian 
basis functions. This method is quite similar to the one 
employed in [32] except that a Lagrangian (as opposed 
to Eulerian) approach and fourth order accurate Pade 
approximate formulas for spatial discretization were 
employed there. 

Table III shows that, although B-splines reduce the 
growth rate of high modes, they require numerical filtering 
in order to integrate for longer times. More specifically, 
when 101 nodes are used with At =0.004 there is an 
exponential growth of all modes and the energy, probably 
due to the unsatisfied stability requirements of R K. 

1.5 

0.5 

)I 

-0.5 

-1.5 

Fig. 6. Evolution of drop shapes using the indirect method and cubic B-splines, E = 0.3, N = 101, dt = 0.002, I dt = -0.004. 
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FIG. 7. Evolution of kinetic (-), surface, (- - -), and total energy 
(.‘.) over nine periods of P4 with indirect method; &=0.3, N= 101, 
At = 0.002,1 At = -0.004. The surface energy has been translated so that 
it starts from zero. 
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A smaller time-step, At = 0.002, eliminates this instability 
but still allows for slow growth of high modes and energy. 
Figure 2 shows the evolution of several Legendre coef- 
ficients of the potential, P,, P,, P,, P,, P,,, and Ploo, prior 
to the application of numerical viscosity (A= 0). The higher 
modes, P,,, P,, , P,,, grow faster than the intermediate 
ones, P,,, P,,, P,o; see [45]. The evolution of P,, and P,, 
is indicative of the general trend. The same behavior is 
observed for the normal velocity and drop shape, but it is 
less pronounced. Figure 3 shows the increase in energy after 
two periods of oscillation of P, also. The distribution of 
velocity potential around the drop surface after two periods 
of oscillation is shown in Fig. 4. Note the loss of smooth- 
ness, especially close to the poles. This is commonly 
observed in simulations of axisymmetric potential flows 
[lS, 321 and is attributed to rapid variation of the elliptic 
integrals between nodes near the poles. Furthermore, as the 
number of nodes is increased the loss of accuracy at the 
poles decreases, see also Table II. 

When filtering is applied with i At = -0.002, a slight 
decrease in energy and the physically expected growth of 
higher modes are observed after four periods of oscillation. 
Subsequently, the energy increases monotonically. 

1.0 

FIG. 8. Variation of the normalized Legendre modes of the normal velocity at the drop surface obtained with the direct method and B-splines; E = 0.3, 
N=101,At=0.001,1=0. 

581/101/2-2 
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Doubling of the filtering parameter to 1 At = -0.004 allows 
integration to proceed for about eight periods. At that 
point energy decreases drastically for a short time and 
eventually increases exponentially. Lundgren and Mansour 
[32] used an even larger parameter for filtering and 
integrated for about 20 periods of P, with At =0.005. 
observing a somewhat larger decrease in energy. This is in 
agreement with the trend observed here. Figure 5 shows the 
evolution of the first four Legendre modes of the potential 
over eight periods of P,. The high modes, e.g., P,,, P,, , 
P I”“~ have been successfully damped and are not shown. 
see [45]. 

A closer examination of the lower modes, P,, P,, P,, P, , 
reveals interesting coupling phenomena which are similar to 

those observed and analyzed by others. A second beat is 
superimposed on the expected slower oscillations of the 
two-lobed mode, with roughly half the period of P,. as a 
result of nonlinear coupling [28]. There is also a slow 
beat between the fourth and the sixth modes indicating 
resonance [32,42]. Even though the linear periods are 
T4 = 0.7405 and T6 = 0.4056. the numerical values of their 
nonlinear counterparts are larger (as expected [ZS]) and 
such that T, =0.84 is almost twice as large as T, = 0.43. 
This favors second-order resonant coupling between the 
two modes [42]. The eighth mode is excited through 
second-order coupling with the fourth mode [28], but as 
time increases resonant envelopes arise and valleys occur 
very close to the crests of the P, envelope. Considering that 
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FIG. 9. Variation of the normalized Legendre modes of the normal velocity at the drop surface obtained with the direct method and E-splines; E = 0.4, 
N=101,dr=0.001,1,=0. 
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the nonlinear frequency of P, is almost three times as large 
as the one of P,, T, = 0.3, third-order harmonic resonance 
should be possible. 

Selected drop shapes are shown in Fig. 6 obtained 
approximately at the end of the first, fifth, seventh and ninth 
period of P,; further shapes are given in [45]. The total 
energy remains constant up to three significant digits and 
for eight periods of oscillation. Subsequently, it decreases 
due to the numerical viscosity of this scheme, Fig. 7. As 
expected, kinetic and surface energy oscillate with half the 
period of P,. In general, the drop volume is conserved more 
accurately than the total energy. 

5.2.3. Direct Formulation with Lagrangian Basis Func- 
tions. This scheme does not suffer from as severe a short- 
wave instability as observed in the indirect method. Integra- 
tion can proceed for large enough times and meaningful 
comparisons of different time-integrators can be performed. 
With explicit time integration schemes, mesh refinement 
requires concurrent reduction of time step in order to 
achieve conditional stability. As can be seen from Table IV, 
the fourth-order R-K method permits four times as large a 
time-step as the one permitted by the fourth-order A-B-M. 
Thus, even though R-K requires twice as many operations 
per time-step, it is still preferable over A-B-M. When the 
corrector step in A-B-M is repeated until convergence it 
becomes an implicit method and given the number of nodes 
a Lipschitz condition exists [44] that determines the maxi- 
mum possible time-step for the iterations to converge. It is 
found here that this maximum time-step is essentially the 
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same as the maximum time-step for numerical stability of 
the explicit A-B-M. Since more than one iteration is 
required per time-step, the implicit A-B-M is more time 
consuming than its explicit counterpart. Even when stability 
criteria are met and iterations converge, short-wave 
instabilities reduce the accuracy of calculations. 

5.2.4. Direct Formulation with Cubic B-Splines. The 
higher accuracy and smoothness of these basis functions 
more easily capture a solution that varies in smaller and 
smaller length scales as time increases. Therefore, the 
appearance of high modes is significantly delayed and 
accurate time integration is performed for long times 
without resorting to filtering. Stability characteristics of the 
two explicit schemes were not affected by the introduction 
of these basis functions and made the R-K scheme the 
obvious choice. 

For completeness, the second-order-accurate trapezoidal 
rule is also used and is coupled with Newton’s iterations for 
simultaneous calculation of all the unknowns. As a result 
the integral equation cannot be classified either as first or 
second kind. The initial guess is provided by the second- 
order A-B formula. In order to compensate for the inver- 
sion of a matrix three times larger that arises in this method 
and to compare it with R-K for the same numerical effort a 
larger time-step must be used, dt = 0.002 with 101 nodes. 
Instead, a time-step of 0.001 is used here for the same 
number of nodes and the direct formulation. Numerical 
effort is measured in terms of CPU time here, since storage 
requirements are limited for the relatively small number of 

r / 
b 

0 1 2 3 

Time 

FIG. 10. Evolution of kinetic (-), surface (- - -), and total energy (. ‘) by the direct method and B-splines for either (a) E = 0.3 or (b) E = 0.4. 
Surface energy has been translated so that it starts from zero; N = 101, At = 0.001, I = 0. 
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unknowns used. As the number of nodes increases the 
system matrix constructed when the trapezoidal rule is used 
has to be stored out of core, which significantly reduces 
efficiency of the calculations. Accuracy is still controlled by 
the spatial discretization. Therefore, very similar results 
were obtained and especially for the shape they agreed to 
within four significant digits after four periods of P,. The 
energy, however, is conserved to within six digits by R-K as 
opposed to live digits by the trapezoidal rule. In view of its 
efficiency and simpler implementation the R-K integrator is 
used in the remaining tests. 

Figures 8 and 9 show the evolution of selected Legendre 
modes of the normal velocity normalized with respect to the 
linear amplitude of P, and for two different values of the dis- 
turbance amplitude, E = 0.3,0.4, respectively. The normal 
velocity is the most sensitive variable to short-wave 

1.0 

c1 0.0 

-1.0 

0 5 10 
Time 

I.0 I 

instabilities in the direct formulation. Additional modes are 
given in [45]. When E = 0.3, the intermediate modes. P,,: 
P,,, P,, exhibit a physical and gradual growth, whereas the 
higher modes, P,, and P,,,, have not been excited. The 
evolution of P,, P,, P,, and P,, is given here and is 
indicative of the above-described behavior. Hence integra- 
tion advances for 10 periods of the primary mode with 
acceptable accuracy. However, when E = 0.4 a more promi- 
nent increase of the intermediate modes is observed within 
only 2.5 periods of P,. The high modes grow more slowly 
here than high modes in the indirect formulation and inter- 
mediate ones in the present formulation, hence filtering is 
ineffective. Figures 10a and lob show the energy evolution 
for the same two cases. When E =0.3, the total energy is 
conserved, whereas when E = 0.4, a slight increase in energy 
accompanies the appearance of high modes. 

1.0 

0.0 

-1.0 

1.0 

Time 

0 5 10 0 5 10 

Time Time 

FIG. 11. Oscillations of the normalized Legendre coefficients of the drop shape obtained with the direct method and B-splines, E =0.3, N = 101, 
dt=0.001,1=0. 
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Repeating the calculations for E = 0.3, but with 51 nodal 
points and At = 0.002, over the same time interval gives 
results that agree very well with the earlier ones. For 
example, energy is now conserved up to four significant 
digits, whereas it was conserved up to live significant digits 
with N= 101. Moreover, drop shapes, after 10 periods of the 
primary mode, agree up to the third significant digit except 
at the poles, where they agree up to two digits. As a result, 
short-wave growth can be treated by mesh refinement alone, 
when the direct formulation is used. Further comparison of 
solutions for the two different mesh sizes is given in 
Pelekasis [45]. The calculated drop shapes agree well with 
those calculated by the indirect method [45]. The same 
progressive increase of higher modes was observed. It 
should be noted that the motion is not strictly periodic. 

The nonlinear periods of the lower Legendre modes are 

1.0 

1.0 

4 I  

0 5 10 

Time 

-1.0 1 I 

found by measuring the distance between successive 
maxima or minima in the oscillation of the corresponding 
coefficients shown in Fig. 11. These are the coefficients of 
the Fourier-Legendre decomposition of the shape function. 
The values obtained for P, are T,=O.83 and 0.912 when 
E = 0.3 and 0.4, respectively. Tsamopoulos and Brown [28], 
in their weakly nonlinear analysis, predict a decrease in the 
oscillation frequency with the square of the amplitude E. In 
particular, the above investigators predict for the fourth 
Legendre mode 

w4= w4,o 
! 

I-;2.91361 +O(.s4), 
> 

(55) 

where o and o 4,0 denote the linear and nonlinear frequency, 
respectively. A graphic representation of the above equation 

1.0 / 

N . 
” 0.0 m 

-1.0 I 

0 5 10 

Time 

O 5 10 
Time 

5 
Time 

FIG. 11-Continued 
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FIG. 12. Variation of the frequency of the fourth Legendre mode with 
increasing amplitude of the initial distortion mode, P,, as predicted in 
[28]. The dots correspond to numerical results. 

is given in Fig. 12. The dots correspond to numerically 
obtained values for the nonlinear frequency of P, for live 
different values of the amplitde, E = 0, 0.05, 0.1, 0.3, 0.4. 
The frequencies obtained for small values of E, wq = 8.445 
and 8.377 when E = 0.05 and 0.1, conform well with the 
asymptotic behavior predicted by Eq. (55). As it is generally 
true with asymptotic results, however, they gradually lose 
validity as the small parameter increases. Hence, the 
numerical results for the frequency when E = 0.3, 0.4 lie 
above the continuous curve in Fig. 12. 

6. CONCLUSIONS 

A hybrid finite-boundary element method for solving 
free-surface potential flows has been developed. The non- 
linear oscillations of an inviscid liquid drop were studied as 
a test problem for which asymptotic solutions exist. 

It was found that among the schemes tested, cubic 
B-splines and the fourth-order R-K integrator should be 
preferred for space and time discretization, respectively. The 
direct formulation that results in an integral equation of the 
first kind was found to prevent short-wave instabilities by 
mesh and temporal refinement alone and without resorting 
to any form of filtering. Moreover, the direct formulation 
consumed less CPU time per time-step than the indirect, 
since the latter one requires construction of one more 
system matrix. Filtering was necessary with the indirect 
method, which involves solution of an integral equation of 

certain loss of accuracy, especially for long time calcul;~- 
tions. However, filtering allows for a larger time-step. It 
should be anticipated that when much larger system 
matrices are created, their direct inversion would bc the 
time-limiting step in the numerical algorithm. 

Linear solutions and eigenfrequencies of the test problem 
were easily recovered. In the nonlinear regime, the motion 
is decelerated due to increased inertia, and nonlinear 
frequencies and mode coupling were calculated. Accurate 
calculations were performed for a long period of time. This 
method has been applied in studying nonlinear oscillations 
of a spherical liquid shell [21] and the relative motion of 
interacting bubbles in liquids [45], [46]. 
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